Congestive heart failure, a clinical syndrome caused by a variety of cardiac and non-cardiac causes, carries a poor prognosis. In most patients it is due to severe reduction of left ventricular contractility accompanied by diastolic dysfunction. In spite of the salutary effect of newer drugs on survival and quality of life, the number of patients with congestive heart failure keeps climbing. This may be due to an aging population, the increased use of thrombolytic agents in the setting of acute myocardial infarction and the widespread use of drugs for the treatment of heart failure. Cardiac transplantation remains the main therapeutic modality for patients who are not candidates for conventional surgery and despite maximal medical treatment are plagued by symptoms. In this paper we present the initial experience at the Onassis Cardiac Surgery Centre on patients with end-stage heart failure treated by orthotopic heart transplantation.

Methods
Between April 1995 and February 2002, twenty-two (22) orthotopic transplants were performed at the Onassis Cardiac Surgery Centre. During the same period 532 patients were referred for opinion and 223 of those were admitted for pretransplant evaluation. The majority (309 patients) were found unsuitable, either due to early referral or because they presented obvious contraindications. The pretransplant evaluation consisted of a detailed clinical examination along with an ECG, echocardiographic study, right and left cardiac catheterization, spirometry with MVO2 determination, myocardial...
viability studies (in patients with coronary artery disease), a myocardial biopsy (if indicated), pulmonary function tests and evaluation of organ systems by specialists (G.I., Nephrology, Neurology, Psychiatry, Vascular Surgery, Endocrinology, Oral Surgery, Rheumatology, etc.). The patients had a full hematology and biochemistry screening, a coagulation profile and immunological studies, HLA tissue-typing and a P.R.A. determination. From 1995 up to July 2002 a total of 150 potential recipients were checked. All studies were performed during hospitalization (5-8 days) under the supervision of two trained transplant coordinators. Data obtained were presented to the Patient Selection Committee (P.S.C.) for decision and subsequent listing. This consists of all physicians participating in the pre-transplant evaluation including the transplant coordinators. Of the initial group of 223 patients only 96 completed the pre-transplant evaluation and were presented to the P.S.C. Seventy-one patients (74%) were accepted and listed, while the remaining 25 (26%) were turned down due to contraindications.

Results

All transplant patients presented with symptoms of severe congestive heart failure due to marked left ventricular dysfunction. In thirteen patients the disease background was dilated cardiomyopathy, in six extensive C.A.D. with poor myocardial viability and in the remaining three valvular disease. Four patients had previously undergone open-heart surgery through a median sternotomy. The pertinent clinical and hemodynamic findings in these patients before surgery are presented in table 1.

Selection criteria for transplantation

The transplantation team at the Onassis Cardiac Centre follows the guidelines of the International Society of Heart and Lung Transplantation and those of the American College of Cardiology. In summary, appropriate candidates for transplantation are those who are younger than 65 years of age, in end-stage cardiac failure (Class III-IV of N.Y.H.A.), who cannot be treated by conventional surgical methods while receiving maximal medical treatment. In addition, their organ systems are intact and they are free of recent infection. They should be compliant, possessing a supportive social environment and not substance dependent (including nicotine). Special attention was paid to the assessment of pulmonary circulation, which can be involved early in the clinical course as manifested by pulmonary hypertension. Significantly, non-reversible pulmonary hypertension constitutes an absolute contraindication to orthotopic heart transplantation because of the high possibility of early graft right ventricular dysfunction. The preoperative assessment of the pulmonary circulation and the calculation of pulmonary resistance are obtained by right heart catheterization after administration of vasodilating agents (Nipride, Dobutamine, Milrinone, NO). It is emphasized that selection of a suitable recipient constitutes the single most important step toward successful transplantation and a long-term survival.

Clinical course on the waiting list

Of 71 patients who were listed 12 either refused the proposed procedure or developed complications precluding activation on the list. The majority, 59 patients, were listed but 37 of those (63%) died awaiting a graft, while 22 (37%) were transplanted. The waiting period (mean ± SD) of those transplanted was 166±156 days (range 6-521 days). At regular intervals all patients on the waiting list were

Table 1. Baseline clinical and hemodynamic characteristics of the transplanted patients (%).

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, year (range)</td>
<td>42.5 (15-60)</td>
</tr>
<tr>
<td>Gender M/F</td>
<td>16/6</td>
</tr>
<tr>
<td>Etiology of congestive heart failure</td>
<td></td>
</tr>
<tr>
<td>Ischemic</td>
<td>6 (27%)</td>
</tr>
<tr>
<td>Non-ischemic</td>
<td>16 (73%)</td>
</tr>
<tr>
<td>NYHA functional class</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>18 (82%)</td>
</tr>
<tr>
<td>IV</td>
<td>4 (18%)</td>
</tr>
<tr>
<td>Max O2 consumption (mlO2/kg/min)</td>
<td>11.7±2.3</td>
</tr>
<tr>
<td>Left ventricular ejection fraction</td>
<td>18%±4%</td>
</tr>
<tr>
<td>Medical therapy</td>
<td></td>
</tr>
<tr>
<td>Diuretics</td>
<td>22 (100%)</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>15 (68%)</td>
</tr>
<tr>
<td>Angiotensin Receptors inhibitors</td>
<td>5 (23%)</td>
</tr>
<tr>
<td>Digoxin</td>
<td>20 (91%)</td>
</tr>
<tr>
<td>B-blockers</td>
<td>11 (50%)</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>13 (59%)</td>
</tr>
<tr>
<td>Implantable Cardioverter Defibrillator</td>
<td>5 (23%)</td>
</tr>
<tr>
<td>Preoperative IABP</td>
<td>3 (14%)</td>
</tr>
<tr>
<td>Home inotropic support</td>
<td>9 (41%)</td>
</tr>
<tr>
<td>Hemodynamic parameters</td>
<td></td>
</tr>
<tr>
<td>Mean pulmonary artery pressure (mmHg)</td>
<td>35.2±9.6</td>
</tr>
<tr>
<td>Pulmonary capillary wedge pressure (mmHg)</td>
<td>26.9±8.7</td>
</tr>
<tr>
<td>Transpulmonary pressure gradient (mmHg)</td>
<td>8.3±4.8</td>
</tr>
<tr>
<td>Pulmonary resistance (Wood Units)</td>
<td>2.0±1.41</td>
</tr>
</tbody>
</table>

(Hellenic Journal of Cardiology) HJC • 103
evaluated clinically and checked by right heart cathe-
terization (every three months). An implantable
defibrillator was implanted in five patients because
of ventricular tachyarrhythmias.

Preoperative inotropic support
In 23 of the 59 (39%) patients on the waiting list,
inotropic support was used as a “bridge” to trans-
plantation in addition to the conventional medical
regimen. This consisted of the continuous intra-
venous administration of inotropic drugs with a por-
table pump in nineteen patients (treatment duration
10±124 months, range 0.1-54 months) or, in four
patients, an intraaortic balloon pump (I.A.B.P.) in
combination with inotropic drugs (duration of
I.A.B.P. 34±3 days). Of those 23 patients on home
inotropic support 9 (39.1%) died while awaiting a
transplant, while thirteen (56.5%) were transplant-
ed. As shown in table 1, of 22 patients transplanted
three were supported by I.A.B.P., while thirteen
(59%) received continuous home inotropic support
as a “bridge”. In one patient with end-stage ischemic
cardiomyopathy after coronary artery bypass and an
LV aneurysmectomy, the continuous inotropic sup-
port for 54 months has significantly improved his
congestive heart failure and his lifestyle.8 Mechanical
support by means of LVAD, RVAD, biVAD was not
employed because these devices were not available
in our hospital.

Donor selection
Selection of a suitable donor constitutes the second
significant (the other being selection of the appro-
priate recipient) decision by the transplant team.
Usually, donors are younger than 35 years of age in
order to preclude coronary disease in the graft. A
detailed history to rule out diabetes mellitus, hyper-
tension and C.A.D., is of the utmost importance. Ab-
sence of cardiac arrest during or after the accident is
desirable as well as avoidance of prolonged hypot-
ension (B.P. < 90mmHg) necessitating administra-
tion of excessive amounts of catecholamines. Signi-
ficant factors in making the selection are donor, sex
and distance from the donor hospital, which deter-
mines ischemia. In the present study the ischemia
time was 186±12min. Recipient dimensions (body-
build) in relation to those of the donor are of ob-
vious importance. The combination of age, sex, body
dimensions and anticipated ischemia time as well as
of pulmonary hypertension are of the utmost impor-
tance for a successful outcome and can only be ma-
stered after the performance of a substantial number
of transplants. It is known that grafts from older
donors constitute a risk factor, however grafts from
young persons are not always suitable. Graft preser-
vation is effected by means of cold crystalloid cardio-
plegia.

Operative technique
The technique of orthotopic transplantation has lit-
tle changed from the time it was described by Lower
and Shumway (1960). The operation is performed
through a median sternotomy with two venous can-
nulae inserted in the right atrium while the arterial
cannulae is placed in the aorta. After going on by-
pass the ascending aorta is cross-clamped to avoid
dislodgement of any existing clot in the left ventricle.
The heart is removed leaving two atrial cuffs in-situ
containing the caval and pulmonary venous orifices.
Suturing of the graft starts from the lateral wall of
the left atrium and the stitch is brought circumferen-
tially toward the interatrial septum and the right
atrium. Subsequently, the pulmonary arteries and
the aorta are sutured using standard techniques.

Immediate postoperative course
The median donor age was 26 years with a range of
15-49 years (18% were over 35 years). The 30-day
mortality was 9.1% (2 out of 22 patients) and the
cause of death was intraoperative hemorrhage in one
patient with two previous heart operations and septic
shock due to pseudomonas pneumonia in another
with dilated cardiomyopathy. Postoperative compli-
cations consisted of pneumonia (5 patients), urinary
tract infection (1 patient), cellulitis involving the left
jugular vein (1 patient), cardiac tamponade (1 pa-
tient), subarachnoid hemorrhage successfully de-
compressed (1 patient) and humoral rejection (1
patient). Four patients were treated by hemodialysis
because of acute tubular necrosis and one was sub-
jected to plasmapheresis. Hospitalization after trans-
plantation was 33±22 days (range 4-85 days), I.C.U.
stay was 12.6±7.8 days (range 4-34 days), while time
in the Cardiology clinic was 17.9±15 days (range 9-
60 days). A triple-drug immunosuppressive protocol
consisting of cyclosporin, azathioprine and steroids
with induction therapy (A.T.G.10,11 was employed.
In sixteen patients mycophenolate mofetil (M.M.F.)
was used instead of azathioprine. In all patients with a smooth clinical course a serious effort was made to decrease and discontinue steroids in order to avoid the well-known side-effects. Gradually, over the course of the last three years, all patients have been switched to M.M.F. instead of azathioprine. The rest of the medical regime includes antihypertensive and lipid-lowering drugs, as well as agents for the prevention of opportunistic infections. All patients are placed on an early detection of rejection protocol employing frequent endomyocardial biopsies.

Long-term follow up

Of the twenty patients who were discharged after orthotopic heart transplantation one died (5% mortality) because of a lymphoma, 14 months after an otherwise uneventful transplantation. The total mortality, perioperative and long-term, was 13.6% over a follow-up period of 41.7±22.1 months (range 2.5-83 months). Survival at Onasis Cardiac Surgery Centre compares favorably with that reported by the International Society of Heart and Lung Transplantation, as shown in picture 1. During the first year after transplantation all patients are subjected to routine endomyocardial biopsies (initially, once a week) with gradually decreasing frequency. One year after transplantation, all patients are investigated by right and left cardiac catheterization with coronary angiography and an endomyocardial biopsy. The main clinical events during long-term follow-up are listed in table 2. Eleven patients (50%) developed rejection and were successfully treated by optimizing the immunosuppressive regimen. Out of 38 episodes of cellular rejection, 29 (76.3%) were identified in the first six postoperative months. One episode was due to sensitization to DR antigens during pregnancy and early diagnosis facilitated treatment. In the first year after transplantation rejection was identified in 55.5% of the patients, which dropped to 16.7% thereafter. Serious post-operative infections developed in 13 patients (59.1%), especially in the first six months. Among them were C.M.V. infection (7 patients), pneumonia (6 patients), urinary tract infection (2 patients), superficial thrombophlebitis (1 patient), herpes zoster (1 patient) and cellulitis.

Table 2. Clinical events of the transplanted patients. Patient number (%).

<table>
<thead>
<tr>
<th></th>
<th>0-30 days</th>
<th>1st-6th month</th>
<th>6th-12th month</th>
<th>> 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient number</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Mortality</td>
<td>2 (9.1%)</td>
<td>0</td>
<td>0</td>
<td>1 (5.3%)</td>
</tr>
<tr>
<td>Rejection</td>
<td>8 (36.4%)</td>
<td>7 (35%)</td>
<td>1 (5%)</td>
<td>3 (15.8%)</td>
</tr>
<tr>
<td>Infections</td>
<td>7 (31.2%)</td>
<td>8 (40%)</td>
<td>1 (5%)</td>
<td>3 (15.8%)</td>
</tr>
<tr>
<td>Coronary disease</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (5.3%)</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (5.3%)</td>
</tr>
</tbody>
</table>
along the jugular vein (1 patient). Pulmonary embolism (2 patients), peroneal nerve palsy (1 patient), peripheral neuropathy (1 patient), rhabdomyolysis with acute renal failure due to combined administration of statins and antifungals (1 patient) and cardiac tamponade after biopsy (1 patient), were also encountered. Hip replacement was performed in one patient and a dual-chamber pacemaker was implanted in another patient three years after transplantation, because of AV block (Mobitz 1) with intraventricular conduction disorder. No other important postoperative arrhythmias were noted. Routine coronary angiography identified significant C.A.D. (>50% stenosis of a major coronary artery) in one patient (4.5%), while in two patients there was minor C.A.D. The average interval between transplantation and documentation of C.A.D. was three years (range 2-4 years). Acute myocardial infarction or de novo congestive heart failure did not occur.

Lymphoma was diagnosed in one patient, fourteen months after surgery and he succumbed to his illness.

Transplant Cost

The total cost from transplant to discharge was calculated at 62,000 ± 23,400 euros (range 46,800-98,000 euros).

Discussion

This clinical study reports the experience of one Transplant Centre in the first seven years of its activity. It is obvious that the long-term results after orthotopic heart transplantation are extremely satisfactory and comparable to those reported by the most experienced Transplant Centres abroad14, 15. Lolas et al published their experience with orthotopic heart transplantation in 23 patients, from 1990 to 199416. It was the first organized and detailed analysis concerning the clinical experience of that group which, incidentally, performed the first successful orthotopic heart transplantation in Greece. In comparison to those by Lolas et al, our recipients had similar pulmonary artery pressures but higher pulmonary capillary wedge pressures (26.9 ± 8.7 mmHg vs. 22.9 ± 7.1mmHg) and lower pulmonary resistance (2 ± 1.4 W.U. vs. 2.6 ± 0.8 W.U.) indicative of a more advanced cardiac decompensation, yet of a milder involvement of the pulmonary vasculature. Donors in our clinical experience were some-what younger (26 years vs. 29.4 years) but ischemia time was longer (almost 3 hours vs. 2.6 hours). Mechanical assistance of the LVAD, RVAD, biVAD modality was not used in either series, while in four of our patients hemodynamic stability was achieved by employing an I.A.B.P. In the aforementioned study the 30-day mortality was 22%, while of the eighteen patients discharged, eight (44%) died during a follow-up of 14.1 ± 11.8 months (total mortality 57% in the first four years of the clinical program). Two patients died because of acute graft dysfunction, six of postoperative infection, while two more succumbed to late graft dysfunction without evidence of cellular rejection. Those results are different from ours, mainly in two points: the development of acute graft dysfunction and the appearance of opportunistic infections. In our experience there was no incident of graft dysfunction despite the need for preoperative inotropic and/or mechanical support in 13 patients (59% of the transplanted patients) This favorable outcome may be attributed to the salutary effect of the inotropic support on pulmonary resistance and justifies the very strict preoperative assessment of pulmonary hypertension by means of pharmacological manipulations. Also we did not experience lethal infections after discharge despite their relatively high incidence during hospitalization (59% of the patients). We attribute this to the standard antibiotic prophylaxis in all patients and to the aggressive treatment of documented infections.

In this initial experience we observed significant mortality (63%) in patients on the active list. Similarly patients on the active list, on home inotropic support, experienced a mortality of 39.1%. It is well known that world-wide donor shortage constitutes the most significant factor restricting the wide application of heart transplantation. In Greece, in particular, the availability of cardiac donors is the lowest in Europe (1 per million population)18. Mobilization and coordination of state agencies along with increased awareness of those involved (medical and nursing staff, administrative personnel) are the sine qua non for the wider application of this life-saving procedure for patients with non-reversible congestive heart failure. Rejection and infection are not unusual in this group. The importance of preventive regimens against opportunistic infections (Pneumocystis Carinii, herpes, hepatitis) and of vaccination (against pneumonia, tuberculosis, influenza) should not be underestimated. A small number of patients
developed C.A.D. after the transplant (accelerated graft atherosclerosis). We have been using a combination of calcium channel blockers and statins in an effort to prevent the development of this serious complication. As expected, C.A.D. developed silently without any symptoms or myocardial infarction.

Heart transplantation in Greece is feasible in a small and strictly selected number of patients with non-reversible congestive heart failure. Long-term results are equal to those of the best Transplant Centres abroad. This success is due to teamwork, meticulous selection of both recipient and donor and the continuous follow-up of these patients for life. The small number of cardiac grafts in our country dictates that only teams with the necessary knowledge, organization and commitment should be allowed in this endeavor.

Acknowledgements

The Transplant team would like to express cordial thanks to the transplant coordinators Chryssa Zamanika, Dimitra Kollia and Hrisoula Louris for their continuous and untiring follow-up of these patients, which significantly contributed to the success of the Program.

References