Epicardial Adipose Tissue and No-Reflow Phenomenon: Adipokines as Regulators of Coronary Microcirculation?

ALEXIOS S. ANTONOPOULOS1,2, CHARALAMBOS ANTONIADES2, DIMITRIS TOUSOULIS1

1First Cardiology Department, Hippokration Hospital, Athens Medical School, Greece; 2RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, UK

The no-reflow phenomenon is defined as a lack of coronary blood flow after removal of a coronary obstruction.1 No-reflow is considered to be dependent on the structural damage to the microvasculature during the ischaemic period, but the exact mechanisms remain unclear.2 No-reflow is associated with a higher risk of malignant arrhythmias, early congestive heart failure, and mechanical complications (such as cardiac rupture) post-acute myocardial infarction.2,3 Importantly, no-reflow is also associated with a doubling in 5-year mortality risk after primary percutaneous coronary intervention (PCI), independently of classic risk factors or infarct size,3 and therefore poses a major challenge for the management of AMI patients in the era of PCI.

In this issue of the Hellenic Journal of Cardiology, Zencirci et al1 provide data on the association between no-reflow and epicardial adipose tissue (EAT) thickness in a cohort of 114 STEMI patients undergoing primary PCI. It is shown that patients with no-reflow had significantly greater EAT thickness (measured by echocardiography) compared to subjects with normal reflow (6.1 ± 2.1 vs. 3.9 ± 1.7mm, respectively, p<0.001). On prospective follow up, no-reflow (but not EAT thickness) was an independent predictor for heart failure admission. The association between no-reflow and heart failure is well-established; the inability to restore coronary blood flow and salvage myocardial tissue at risk increases infarct size and negatively affects cardiac remodelling.1,3 Nevertheless, the presented relationship between EAT thickness and the no-reflow phenomenon is novel and merits further investigation.

The pathophysiology of no-reflow is considered to be primarily associated with ischaemic damage to the microvasculature, but multiple factors may contribute to it; cellular oedema in the capillaries, cell contracture in the ischaemic zone, endothelial dysfunction, oxygen free-radical production during reperfusion, intravascular plugging by fibrin, platelets or leukocytes, may all contribute to the occurrence of the no-reflow phenomenon.2 Adipose tissue is known to affect cardiovascular physiology via the release of active adipokines in a paracrine (via local release and diffusion) or endocrine (via the systemic circulation) manner.4-6 EAT is of special interest to coronary and myocardial physiology, given its close spatial affinity with the heart. Secretory products from EAT can induce cardiomyocyte dysfunction and myocardial fibrosis,7 while pericoronary EAT-released leptin pro-
Epicardial Adipose Tissue and No-Reflow

motes coronary endothelial dysfunction. In clinical studies, increased EAT volume has been associated with coronary atherosclerosis progression and plaque vulnerability, and is an independent predictor of future cardiovascular events in subjects undergoing computed tomography. The use of epicardial adipose tissue measurements as a biomarker in ischaemic heart disease is summarised in Table 1.

To date, only limited data exist on the association between EAT and the no-reflow phenomenon. In a previous small cohort of 66 subjects undergoing coronary angiography, an association between EAT thickness (assessed by echocardiography) and slow coronary blood flow was demonstrated.

Currently, it is unclear how EAT could be involved in the no-reflow phenomenon, but recent findings from translational studies may hold the key to its understanding. We have recently shown that there is a crosstalk between perivascular adipose tissue (PVAT) and human vascular wall; PVAT receives signals from the vascular wall and under conditions of increased vascular oxidative stress, adiponectin released by human PVAT suppresses vascular O$_2$ generation by NADPH oxidase, enhances endothelial nitric oxide (NO) activity and coupling, and therefore vascular NO bioavailability. In a similar way, imbalances in adipokines released by EAT could alter NO bioavailability and the redox state of coronary microcirculation and human myocardium, which is involved in the pathophysiology of no-reflow. Adipose tissue secretory products that regulate endothelial function and vasorelaxation (such as leptin or hydrogen sulphide) may also be important for the function of the coronary microcirculation. Angiopoietin-like protein 4 (ANGPTL4), which controls vascular wall integrity and protects against myocardial injury and Table 1. Clinical studies of the use of epicardial adipose tissue measurements as a biomarker in ischaemic heart disease.

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Major findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang T et al15</td>
<td>373 AMI patients</td>
<td>EAT thickness predicted major in-hospital events</td>
</tr>
<tr>
<td>Ozcan et al16</td>
<td>144 UA/NSTEMI patients</td>
<td>EAT thickness was associated with higher TIMI score</td>
</tr>
<tr>
<td>Altun et al17</td>
<td>65 ACS patients</td>
<td>EAT thickness was positively correlated with the severity of CAD but not with prognosis of ACS patients</td>
</tr>
<tr>
<td>Mahabadi et al11</td>
<td>4093 disease free individuals</td>
<td>EAT was associated with increased risk for future CVD events</td>
</tr>
<tr>
<td>Hajsadeghi et al18</td>
<td>245 subjects undergoing CTA</td>
<td>EAT volume was associated with increased risk for CVD events</td>
</tr>
<tr>
<td>Yerramasu et al9</td>
<td>333 asymptomatic diabetics with no known CAD</td>
<td>EAT volume was positively associated with CAD and CAC progression</td>
</tr>
<tr>
<td>Ulucan et al19</td>
<td>564 consecutive patients undergoing CT</td>
<td>EAT volume was associated with increased odds ratio for CV events</td>
</tr>
<tr>
<td>Forouzandeh et al20</td>
<td>760 with acute chest pain</td>
<td>EAT volume was independently associated with future MACE</td>
</tr>
<tr>
<td>Nakanishi et al10</td>
<td>517 CAD patients</td>
<td>EAT volume predicted atherosclerosis progression</td>
</tr>
<tr>
<td>Kunita et al21</td>
<td>722 CAD patients</td>
<td>EAT volume was associated with increased risk for CVD events</td>
</tr>
<tr>
<td>Harada et al22</td>
<td>170 ACS patients</td>
<td>For EAT volume > 100 mL, increased odds ratio for cardiovascular events</td>
</tr>
<tr>
<td>Ito et al23</td>
<td>117 ACS patients</td>
<td>EAT volume (highest tertile) was an independent predictor for ACS subjects</td>
</tr>
<tr>
<td>Cordeiro et al24</td>
<td>277 CKD patients</td>
<td>EAT volume was associated with increased risk for CV events</td>
</tr>
</tbody>
</table>

ACS – acute coronary syndrome; AMI – acute myocardial infarction; CAD – coronary artery disease; CKD – chronic kidney disease; CVD – cardiovascular disease; EAT – epicardial adipose tissue; MACE – major adverse coronary events; NSTEMI – non-ST elevation myocardial infarction; UA – unstable angina.
no-reflow in experimental animal models, is also expressed by human adipose tissue and could have a role in no-reflow. The biology of EAT and the biosynthesis of its secretory products—e.g. adiponectin, leptin, hydrogen sulphide and/or ANGPTL4—could change with hypertrophy of EAT and this may account for the relationship between EAT thickness and the no-reflow phenomenon in the cohort of STEMI patients reported by Zencirci et al.1

So far, little is known regarding the relationship between EAT and the pathophysiology of ischaemic heart disease, but clinical evidence has highlighted that cardiac adiposity and expansion of EAT is an independent risk factor for cardiovascular disease, probably because of parallel changes in EAT biology that affect both the coronary circulation and the heart. Even though in the cohort of Zencirci et al EAT thickness did not predict future HF admission in STEMI patients, the study was limited by the small sample size and the assessment of EAT thickness by echocardiography, which is less reliable compared to volumetric measurements of EAT by computed tomography. The predictive role of EAT quantitation in patients with ischemic heart disease may also be lost in the presence of heart failure and related alterations in EAT mass. Despite these limitations, the findings of Zencirci et al are important, since they link EAT with no-reflow and imply that EAT may have important effects on the coronary microcirculation and myocardial defence mechanisms. Future studies are required to clarify the role of EAT in the pathogenesis of ischaemic heart disease and the no-reflow phenomenon in humans.

References

20. Forouzandeh F, Chang SM, Muhyieddeen K, et al. Does quantifying epicardial and intrathoracic fat with noncontrast computed tomography improve risk stratification be-

