Arrhythmic Sudden Cardiac Death: Substrate, Mechanisms and Current Risk Stratification Strategies for the Post-Myocardial Infarction Patient

Petros Arsenos1, Konstantinos Gatzioulis1, Polychronis Dilaveris1, George Manis2, Dimitrios Tsiachris1, Stefanos Archontakis1, Apostolis H. Vouliotis1, Skenos Sideris1, Christodoulos Stefanidis1

1Electrophysiology Laboratory & First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Athens, 2Department of Computer Science, University of Ioannina, Ioannina, Greece

F or practical reasons, and to overcome potential ambiguities in the existing previous definitions, it was proposed that the term “sudden cardiac death” (SCD) should signify a natural death from cardiac causes, heralded by an abrupt loss of consciousness within one hour of the onset of acute symptoms.1 Because fatal ventricular tachycardia and fibrillation (VT/VF) do cause SCD, this entity has emerged as a tachyarrhythmia surrogate and is used as a classification endpoint in relevant clinical studies.2 However, many other pathophysiological conditions that evolve rapidly can also lead to unexpected death, and in fact the clinical diagnosis of SCD is not synonymous with VT/VF in every case.3 Additionally, recent studies of patients with implanted cardiac defibrillators (ICDs) indicate that many of the deaths defined as sudden were not due to tachyarrhythmia.4 Therefore, the following limitation should be taken into consideration: although SCD usually comes as a consequence of malignant tachyarrhythmia, this is not always the rule. This article presents, in a comprehensive way, the issue of SCD of arrhythmic etiology in patients suffering from coronary artery disease (CAD). The potential arrhythmogenic substrate, the mechanisms for arrhythmia initiation and current strategies for SCD risk stratification are described, with emphasis on their clinical applicability.

Epidemiology of coronary artery disease and SCD

The annual incidence of SCD in Europe and North America is estimated to be approximately 1 episode per 1000 persons.5 SCD is significantly associated with CAD and almost 50% of deaths occurring in myocardial infarction (MI) survivors are of sudden origin.5,6 The risk of arrhythmic death in post-MI survivors has a temporal trend, with the highest death rate observed in the first 6 months after MI and remaining high for the next 2 years.7

Prevention of SCD

Previous studies established the role of the ICD for protection against ventricular tachyarrhythmias,6,10 and the current guidelines recommend the ICD for the primary prevention of SCD in post-MI pa-
patients with left ventricular ejection fraction (LVEF) <35%. Implanting an ICD in all patients with low LVEF does not guarantee that all these devices are going to be activated, as it is well known that 11 high-risk CAD patients need to be treated over a 3-year period for one life to be saved. Selecting patients for ICD implantation with screening based on the LVEF criterion leads to a high-cost health policy. Concurrently, among patients presenting with preserved left ventricular systolic function (LVEF>35%), there is a high-risk subgroup that is not protected by the current guidelines. Moreover, as the magnitude of the population of patients with LVEF>40% is very high, the absolute number of SCD victims within this population is also high. These patients should be detected. For these reasons the improvement of current SCD risk stratification methods is of paramount importance.

Prerequisites and mechanisms for arrhythmogenesis

During the acute phase of MI, VF or polymorphic VT is triggered by the presence of ischemia. During the period after MI, SCD may be caused by different mechanisms: post-infarction areas, including regional and intramural fibrotic zones and scars, remain electrically unexcitable and may form local conditions for re-entry leading to sustained monomorphic VT. The gradual deterioration in left ventricular systolic function leads eventually to clinically overt heart failure, with subsequent activation of the sympathetic limb of the autonomic nervous system and activation of the renin–angiotensin–aldosterone system. Enhanced sympathetic activity predisposes to electrical instability and arrhythmogenesis. The dilatation of the left ventricle contributes to the appearance of electrical heterogeneity and temporal dispersion of repolarisation. These conditions may be arrhythmogenic. The electrophysiological feature that is responsible for the initiation of VF appears to be the electrical heterogeneity. Alterations predisposing to VF can be introduced by anatomic/functional substrates and by transient initiating events that can modulate the basic arrhythmia mechanisms of re-entry, automaticity and triggered activity. Re-entry constitutes the major mechanism responsible for ventricular arrhythmias appearing in acute and chronic CAD and is significantly related to heterogeneity. Transient factors initiating arrhythmias include electrolytic disturbances, acidosis, ischaemia, haemodynamic instability, volume overload and a rapid increase in intraventricular pressure, proarrhythmic action of cardiovascular or other medications, and ion channel abnormalities. Holter recordings reveal that 80% of SCD episodes are due to tachyarrhythmias and 20% to bradyarrhythmia.

Prognostic markers and their association with the pathophysiological substrate of SCD

Risk stratification schemes are based on markers that, by identifying the arrhythmic substrate and the severity of the arrhythmia mechanisms present, are also considered to quantify the risk of SCD. Briefly, such markers (Table 1) reflect: 1) myocardial substrate lesions and post-infarction fibrosis; 2) abnormal repolarization; 3) impaired autonomic nervous system function; and 4) inducibility.

Current SCD risk stratification strategies and methods

LVEF

The impaired left ventricular systolic function is the consequence of post-infarction fibrosis. The deterioration in systolic function is accompanied by oth-

| Table 1. Current matching of prognostic markers to pathophysiological substrate. |
|------------------|--------------------|------------------|
| 1. Myocardial substrate lesions and post-infarction fibrosis | 3. Impaired autonomic nervous system function |
| LVEF | HR |
| QRS & LBBB | HRV |
| SAECG | HRV |
| fragmented QRS | DC |
| MRI | BRS |
| PVBs & NSVT | HR recovery after exercise |
| NYHA class | |
| 2. Abnormal repolarisation | 4. Inducibility |
| QT | EPT |
| QTd | EPT |
| T wave alternans | |
| QT/RR | |
| QTVI | |
| TWV | |

LVEF – left ventricular ejection fraction; QRS – QRS interval; LBBB – left bundle branch block; SAECG – signal averaged electrocardiogram; MRI – magnetic resonance imaging; PVBs – premature ventricular beats; NSVT – non-sustained ventricular tachycardia; NYHA – New York Heart Association functional class of heart failure; QT – QT interval; QTd – QT dispersion; QT/RR – QT dynamics; QTVI – QT variability index; TWV – T-wave variability; HR – heart rate; HRV – heart rate variability; HRT – heart rate turbulence; DC – deceleration capacity; BRS – baroreflex sensitivity; EPT – electrophysiological testing.
er disturbances, such as action potential prolongation, changes in intracellular calcium homeostasis, an increase in the dispersion of repolarisation, accumulation of connective tissue into the cellular gap junctions, and neurohormonal activation. Therefore, the presence of a low LVEF reflects not only the anatomical dysfunction, but also the electrical instability predisposing to VT/VF. The annual arrhythmic mortality increases as LVEF decreases: in patients with LVEF >30% it was 3.2%; in patients with a diminished LVEF between 21-30% it rose to 7.7%; and when the LVEF was <20% the annual arrhythmic mortality climbed to 9.4%. A meta-analysis of 20 studies showed that the critical zone of LVEF<30-40% was correlated with a 4.3 hazard ratio for major arrhythmic events, with a sensitivity of 59% and a specificity of 77%. The association of left ventricular systolic dysfunction with death due to pump failure and ventricular tachyarrhythmia in the post-MI population is well established. Moreover, LVEF preserves its prognostic value in the modern therapeutic era of thrombolysis and β-blockers. However, the prognostic ability of LVEF has several limitations: 1) LVEF measurements show intra- and interobserver variability; 2) systolic function may present temporal variability depending on interventions such as coronary artery bypass, percutaneous coronary intervention, and pharmacological treatment, as well as the natural evolution of the disease; 3) LVEF is correlated more with total mortality than with SCD; and 4) LVEF has low sensitivity, as two thirds of SCDs occur in patients with an LVEF>35%.

QRS

The QRS segment quantifies the duration of ventricular depolarisation. The more prolonged the QRS interval, the more extensive the underlying myocardial ischaemia and/or fibrosis. Therefore, a prolonged QRS interval is correlated with reduced survival. The presence of left bundle branch block (BBB) was an independent prognostic factor for cardiovascular mortality caused by SCD, and a QRS cut-off point > 120 ms was reported to be a significant prognostic marker among ICD recipients, predicting those who would benefit from appropriate ICD activation. Furthermore, patients with an intraventricular conduction delay or left (but not right) BBB exhibited a 50% increase in both SCD and total mortality, independently of LVEF and the results of electrophysiological testing.

Signal-averaged ECG (SAECG) and the presence of late potentials

Abnormal electric activity due to depolarization delay may develop in areas of fibrosis and scars around the infarcted myocardial zones. Such areas favour the development of re-entrant circuits and the initiation of monomorphic ventricular tachycardia. Low-amplitude, high-frequency currents located in the late segment of the QRS complex (late potentials) can be revealed and quantified with the SAECG signal-processing method after the application of specific criteria. The SAECG improves the signal-to-noise ratio, facilitating the detection of low-amplitude potentials. After repeated processing, ectopic or premature complexes are eliminated by comparing incoming QRS complexes against a previously established QRS template. According to the established criteria, the presence of an electrical current can be accepted as real late potentials (LP) when the following three criteria are fulfilled: 1) a filtered QRS complex > 114 ms (fQRS > 114 ms); 2) a low-amplitude signal voltage < 40 μV in the terminal QRS complex that lasts > 38 ms (LAS > 38 ms); and 3) a signal < 20 μV in the last 40 ms of the filtered QRS complex (RMS < 20 μV). It has been suggested that these SAECG criteria should not be applied in patients with BBB and a wide QRS (≥ 120 ms), based on the hypothesis that endogenous intraventricular delayed conduction can either mask or mimic such abnormal currents. Therefore, clinicians mainly use the SAECG in patients without BBB and with a normal QRS duration (< 120 ms). However, there is evidence supporting the efficacy of the SAECG, even in patients with intraventricular conduction delay or BBB, through modification of the LP criteria. The first SAECG studies evaluating the arrhythmic risk in post-MI patients were applied in the pre-thrombolytic era, and suggested a low positive, but a high negative predictive value for arrhythmic events, independently of the presence of other well established risk stratifiers. It was also shown that the presence of LP distinguishes the electrical from the anatomical arrhythmia substrate, while demonstrating widespread variability during the first 60 days after MI. These studies reported that the presence of LP had a sensitivity of 30-76% in the prediction of SCD or major arrhythmic events, with a specificity of 63-96%. The introduction of effective reperfusion therapies that alter the evolution of post-infarction scar formation also

(Hellenic Journal of Cardiology) HJC • 303
affected the presence of LP. A reduced presence and prognostic power for LP were reported from recent post-MI studies after thrombolysis45 and percutaneous coronary intervention,46,47 questioning the utility of the SAECG for arrhythmia risk stratification.48 In summary, the existing data indicate that early revascularization during an evolving MI limits not only the fibrotic scar, but also the LP. In contrast, in patients with extended ischaemia and a well formed post-infarction scar, LP are frequently present, and can detect patients at risk for SCD.43,44 The SAECG is currently recommended as a Class IIb, Level of Evidence B, risk stratification tool among post-MI patients.49

Ventricular premature beats and non-sustained ventricular tachycardia

Ventricular premature beats (VPBs) and non-sustained ventricular tachycardia (NSVT) originate from tissue areas with enhanced automaticity. Automaticity is influenced by autonomic nervous system tone, ischaemia/reperfusion, electrolyte disturbances, and cardio-toxic factors.6,50 The presence of polymorphic VPBs and NSVT increases the risk of the development of polymorphic VT or VF.51 While frequent VPBs may be manifested in a normal heart without carrying any prognostic significance, they are of prognostic importance when they are manifested in patients with CAD, especially in the presence of ischaemia and/or left ventricular dysfunction. Most of the studies in this field conclude that the relative risk for SCD increases when the cut-off point of 10 VPBs/hour is exceeded in post-MI patients.30,51-53 While the positive predictive accuracy of VPBs for arrhythmia prediction is low (5-15%), the negative predictive accuracy is high (>90%).54 Furthermore, if VPBs are combined with other prognostic markers, their prognostic power increases.55 NSVT is defined as a sequence of at least 3 ventricular premature beats at a rate >100 beats/minute that is self-terminated in less than 30 s. In post-infarction patients, the presence of NSVT episodes, with further inducibility of sustained VT during programmed ventricular stimulation, is associated with an increased risk of SCD.89 NSVT preserves its prognostic significance even in the modern era of b-blockers, and it was proved to be a significant predictor of SCD in post-MI patients with a preserved ejection fraction (LVEF>35%), independently of diabetes mellitus, age, and LVEF.56

Prolongation of QT interval and QTc

The repolarisation duration is influenced by the action potential (AP) duration. Prolongation of the AP also induces prolongation of repolarisation. In the case of a prolonged AP, early afterdepolarisations may potentially develop and may further trigger arrhythmias.57 Enhanced AP transmural heterogeneity also reduces the threshold for transmural re-entry.58 All these underlying arrhythmia-facilitating disturbances are reflected by the prolongation of repolarisation, which may be quantified with a simple 12-lead surface ECG marker: the QT interval. Various methods for the measurement of the QT interval have been described, including fully automatic methods for QT calculation. The main disadvantage of this marker is the high inter-observer variability of the measurements, ranging from 25-42%.59,60 The more the heart rate increases, the more the QT interval shortens. For this reason, and to facilitate the comparison of QT intervals among different patients (with different basic heart rates), heart-rate correction of the QT interval has been proposed. The main correction formulas used are Bazett’s (QTc=QT/√RR) and Fridericia’s (QTc=QT/³√RR). When heart rate is particularly fast or slow, Bazett’s formula may either overcorrect or undercorrect. Fridericia’s cube-root formula has the same limitations at slow heart rates, but is considered to be more accurate in subjects with tachycardia. Post-infarction patients with QTc>450 ms have a hazard ratio of 2-3 for SCD.61,62 Other techniques estimating different aspects of repolarisation are QT dispersion,63 QT dynamics,64 T-wave amplitude variability,65 QT variability index,66 and spatial QRS-T angle.67,68

T-wave alternans calculated from exercise and ambulatory ECG recordings

T-wave alternans (TWA) can result from changes in membrane voltage due to steep APD restitution. It has also been proposed that alterations in intracellular calcium cycling are an important basis for repolarisation alternans. Such alternans can occur whenever the heart rate is elevated. Discordant alternans is thought to be highly arrhythmogenic, because it establishes steep, heterogeneous repolarisation gradients and is conducive to re-entry and VT/VF.69 TWA reflects the spatiotemporal heterogeneity of repolarisation and serves as a mechanism of arrhythmogenesis by amplifying repolarisation hetero-
Two techniques have been established for TWA detection. The spectral method analyses fluctuations in the T wave by computerised techniques, using a Fast Fourier Transform. A progressive exercise protocol for increasing the heart rate, with simultaneous use of specific electrodes and a high-accuracy recording process, is necessary for detecting TWA on a μV scale. A bicycle or a treadmill exercise test is used for achieving the optimum heart rate. The typical definition for an abnormal TWA test is the occurrence of >1.9 μV of alternans starting at a heart rate of <110 beats per minute. The modified moving average (MMA) method streams odd and even bins and creates median complexes for each bin. The advantage of this method is that it can be applied to a routine 24-h ambulatory ECG recording. A TWA value ≥53 μV at maximum heart rate derived from ambulatory ECG monitoring has been reported as a cut-off point indicating a high risk for SCD and cardiovascular mortality.

During the first TWA examination, 83 patients underwent atrial pacing for revealing TWA during electrophysiological testing. Subsequently, an ergometer-exercise methodology was applied to disclose the presence of TWA after an increase in heart rate in 290 patients referred for electrophysiological testing. The prognostic value of TWA proved to be better than that of the SAECG, while a combination of the two methods improved the predictive accuracy. Previous studies have also shown that, among patients with heart disease and LVEF<40%, TWA identified not only a high risk group, but also a low risk group unlikely to benefit from ICD prophylaxis. Furthermore, for the guidance of ICD insertion, non-invasive TWA is comparable to electrophysiological testing in predicting the risk of ventricular arrhythmias or SCD in patients with CAD, LVEF≤40%, and NSVT. In addition, exercise-induced TWA and Holter repolarisation alternans calculated by the MMA method presented similar hazard ratios (2.75 vs. 2.94) for the primary endpoint of cardiac death or resuscitated cardiac arrest, while TWA was predictive of serious arrhythmic events in post-MI patients with preserved LVEF (>40%). TWA magnitude calculated by the MMA method from 24-hour Holter recordings was also predictive of VF or arrhythmic death. In contrast to these positive studies, several others reported negative results concerning the use of TWA for arrhythmia risk assessment. TWA is said to have a very high negative predictive accuracy for serious ventricular arrhythmias and SCD. Current guidelines recommend ambulatory TWA as a Class I, Level of Evidence A, and electrocardiographic TWA as a Class IIa, Level of evidence A, test for the evaluation of patients with ventricular arrhythmias.

Autonomic nervous system indices

Mean heart rate

Automaticity in the sinus node generates the intrinsic heart rate (HR). Beyond the intrinsic, the resting HR is also determined by the simultaneous influence of the extrinsic mechanism for HR regulation at the level of the sinus node, which includes the two limbs of the autonomic nervous system (ANS). The sympathetic limb releases norepinephrine and accelerates HR, whereas the parasympathetic limb releases acetylcholine and decelerates HR. In this way, HR may represent a simple marker reflecting the final interactions of the external interplay of the sympathetic and parasympathetic with the intrinsic rate at the level of the sinus node. These interactions are reflected by the formula: \(HR = m \times n \times HRo \).

MI, ischemia, and heart failure provoke functional changes in the ANS. These changes may influence HR and indices such as heart rate variability, heart rate turbulence, baroreceptor sensitivity, and deceleration capacity. Mean 24-hour HR is strongly correlated with HRV markers, and an increased HR is an independent predictor of SCD in the general population, as well as in ischemic patients. Previous studies have reported a 5-fold increase in SCD incidence in a patient subgroup with HR>90 bpm in comparison to the subgroup with HR<60 bpm, and 14.3% mortality for patients with HR>100 bpm versus 0.6% mortality for patients with HR<60 bpm, and a 4-fold risk of SCD for participants with HR>75 bpm in comparison to the subgroup with HR<60 bpm. The cut-off point of 70 bpm predicted total mortality rather than SCD in a post-MI patient population with depressed left ventricular systolic function in our prospective-ly ongoing long term APRET observational study. Figure 1 presents HR diagrams of two different post-MI APRET patients and their correlation with the follow up.

Heart rate variability (HRV)

In healthy individuals the duration of the cardiac cycles shows a normal variation, due to the influence of the ANS on sinus node function and the dynam-
ic balance between its sympathetic and parasympathetic limbs. However in cardiovascular diseases, the ANS is impaired and this normal variation may be lost. Enhanced sympathetic tone, loss of parasympathetic activity, or both, are consequences of cardiovascular diseases, leading to an autonomic imbalance that can further predispose to ventricular arrhythmias and increased mortality. HRV, by quantifying this variation, reflects the ANS status. A Holter recording can be considered as a heartbeat time series. Hidden information with predictive ability may be extracted from this time series after analysis using specific methods. Conventional methods of HRV analysis include time domain analysis (Figure 2 AII, 2 BII), and frequency domain analysis (Figure 2 AIII, 2 BIII). In addition, approximate entropy, detrended fluctuation analysis, and analysis in the time-frequency domain with wavelet transform have also been used. Recommendations for HRV measurement and interpretation have been published previously.

Methods of analysis of HRV

Time-domain analysis

Statistical methods were first used for HRV analysis, extracting simple statistical indices directly computed from RR intervals (with the final results expressed in time units, ms), or extracting the differences between successive RR intervals (with the final results expressed as a percentage).

\[
SDNN = \sqrt{\frac{\sum_{i=1}^{N} (\text{NN}_i - \text{NN})^2}{N}}
\]

where \(\text{NN}_i\) is a normal RR interval, \(N\) is the total number of such intervals, and \(\text{NN}\) is the mean value of all these intervals. This is a simple metric, which mainly describes long term correlations such as those of the circadian rhythm. It is expressed in ms (Figure 2 AII, 2 BII).

\[
SDANN
\]

Standard deviation of 5-minute averaged NN intervals, usually computed for 24-hour continuous recording. It is expressed in ms.

\[
SDNN \text{ index}
\]

Mean of the standard deviations of all NN intervals for all 5-minute segments, usually computed for 24-hour continuous recording. It is expressed in ms.

\[
RMSSD
\]

Root mean square of the successive NN interval differences, usually computed for 24-hour continuous recording. It is expressed in ms.

\[
PNN50
\]

The ratio between the number of NN intervals that differ by more than 50 ms from their preceding interval extracted from the total number of NN intervals. No units, expressed as a percentage.

Since the two last indices are extracted by using differences of successive intervals, they are considered as indices that quantify the influence of the parasympathetic limb on the sinus node. Thus, RMSSD and PNN50 are strongly correlated with the high frequencies of the spectrum of the signal.
Risk Stratification for Arrhythmic Sudden Cardiac Death

in the duration between successive RR intervals are due to the rapid effect of the vagus on the sinus node, something that takes less than 400 ms. In contrast, the effect of the sympathetic stimulation on the heart rate starts with a latency of approximately 5 s, with the maximum response within 20-30 s.\(^\text{109}\)

Frequency domain analysis (spectral analysis)

Spectral methods have been used for the analysis of HRV for many years now.\(^\text{110}\) These methods calculate how the power of the heart rate signal is distributed among the different frequency bands. The most

Figure 2. HRV analysis in two patients with different prognosis and survival. The patient in the subfigures of column A was a 55-year-old male hospitalised with an acute myocardial infarction (MI) in the coronary care unit (CCU), who presents very low HRV compared to the patient of column B. From the tachogram (A I) of RR intervals in a 24-hour recording, mean RR duration is 544 ms, which corresponds to a high mean HR of 110 bpm. The variability of RR intervals is minimal. Analysing HRV in the time domain (A II), we obtain a very low value for SDNN (32 ms). In frequency analysis (A III), all bands show low values. This patient experienced electrical storm and finally died in the CCU. Column B shows the corresponding analysis of a 43-year-old patient with an old ST-elevation MI and percutaneous coronary intervention (1 vessel), LVEF 30%, and NYHA II. The patient is still alive without life-threatening ventricular arrhythmias in the follow up. Tachogram (B I): mean RR is 1037 ms, mean HR is 57 bpm. Analysis of HRV in the time domain (B II) with SDNN 142 ms. Analysis of HRV in the frequency domain (B III) gives satisfactory values for all frequency bands. From the APRET 2011 database. Abbreviations as in Figure 1.
widely used method is Fast Fourier Transform. The heart-rate signal is transformed from one represented in the time domain, into a signal represented in the frequency domain, i.e. the signal is decomposed into several frequencies (sinusoid functions). These frequencies are grouped into several bands and the total power in each of these bands is used for the quantification of HRV.\(^{11}\) Results may be expressed in ms\(^2\) (Figure 2, AIII, 2 BIII).

The frequency bands defined for this purpose are as follows.

HF: 0.15- 0.4 Hz (high frequencies)

Describes cyclic variations of the signal for periods of 2.5-6.6 s, which are due to the discharging of the vagus nerve on the sinus node, and reflects the influence of breathing on the cardiac cycle.\(^{110,112}\) Atropine and bilateral vagotomy as well as vagal cooling may result in minimisation of the effects.\(^{110,112,113}\) HF has been proposed as a non-invasive index for vagal efferent activity in both experimental and clinical studies.\(^{111}\)

LF: 0.04-0.15 Hz (low frequencies)

Describes cyclic variations of the signal for periods 6.6-25 s, mediated by both the sympathetic and the parasympathetic limbs of the ANS. LF variations have been related to cardiac sympathetic control. LF variations in HR correlate positively with variations in thoracic preganglionic sympathetic nerve activity in decerebrate cats\(^{114}\) and with variations in the muscle sympathetic nerve activity in humans.\(^{115}\) In conditions with enhanced sympathetic tone, triggered by various factors such as hypotension, transient experimental coronary obstruction for ischaemia induction, and physical exercise, LF is increased.\(^{113,116}\) Although LF can be considered a measure of the control of the cardiovascular system by the sympathetic nervous system,\(^{117}\) existing data show that both limbs of the autonomic nervous system influence the LF component. Vagal activity also produces fluctuations in the LF. A reduction in the parasympathetic input may also reduce the power of LF.\(^{109}\) An index proposed as representative of the dynamic balance between the sympathetic and the parasympathetic limbs is the ratio LF/ HF.\(^{113}\) Although this index has been used extensively, the interpretation of the associations reflected by the simple ratio LF/HF has been questioned.\(^{118}\)

VLF: 0.0033-0.04 Hz (very low frequencies)

Approximately 12% of the total power of the signal originates from variations in the sequences of RR intervals that present a periodicity varying between 20 s and 5 min. The precise mechanism that causes these variations is not completely known. However, VLF can be eliminated with the use of atropine, suggesting that VLF are related to a parasympathetic efferent limb.\(^{119,120}\) At least in part, those frequencies re-
flect the activity of the renin–aldosterone system.121 It has also been proposed that VLF power reflects thermoregulation or vasomotor activity.122 Physical exercise123 and sleep-disordered breathing can also influence VLF.124

ULF: 0-0.0033Hz (ultra low frequencies)

This is the band with the lowest frequencies in the spectrum, which in a 24-hour recording can detect and quantify variations of RR intervals with a periodicity of 5 min to 24 hours. The underlying mechanisms of ULF are still unknown. Their relatively large periodicity allow us to consider that they are mediated by mechanisms reflecting the long-term equilibrium of the ANS, also reflecting circadian and hormonal activity. A reduction in the power in this frequency band has been clinically proved to be a powerful prognostic index for cardiovascular diseases.100 ULF power is strongly associated with SDANN.125 HRV is influenced by several clinical parameters, such as hypertension, diabetes and CAD. Reduced HRV has been related with increased mortality in subjects who survived after an MI.99,100

In the b-blocker era, modern treatment modifies the influence of the sympathetic nervous system on the heart, also affecting HRV. For this reason, the prognostic value of HRV has been questioned.31 However, HRV is widely used for the risk stratification of post-MI patients. In the first fundamental study in such patients, it was shown that the patient subgroup with SDNN<50 ms presented a 5.3 fold higher mortality in comparison to the subgroup with SDNN>100 ms.99 Similar results have been demonstrated for the prognostic cut off value of SDNN<70 ms.88,126 With multi-resolution wavelet analysis in the time-frequency domain, the dynamic nature of changes in HRV may be studied127,128 and high SCD risk subjects may be detected among post-MI heart failure patients.107

Heart rate turbulence (HRT)

The premature ventricular ectopic beats in healthy persons are followed by a normal biphasic response of the sinus rhythm. Each ectopic beat is followed by a small period when the rhythm is accelerated and a small period when the rhythm is decelerated. This phenomenon is mediated through the baroreceptor reflex of the ANS and the vagus nerve. When the ANS is working normally, there is clear turbulence appearing in the heartbeat series, but when the ANS does not work as expected (e.g. in post-MI patients), then this turbulence is reduced or even disappears. HRT is considered to be an index that quantifies mainly the reflex vagal activity.129,130 As vagal reflexes have a cardioprotective effect, a diminished HRT indicates the inability of vagal nerves to achieve such an effect.130,131 The method was described in 1999.132 The two phases of HRT, the early sinus rate acceleration and late deceleration, are quantified by 2 parameters: turbulence onset and turbulence slope (Figure 3). A visual representation of the phenomenon and detailed references can be found on line (www.h-r-t.com). As a measure of the autonomic response to perturbations of arterial blood pressure after single ventricular complexes, HRT correlates significantly with baroreflex sensitivity,130 and is simple to measure from Holter recordings.133 The analysis requires an adequate number of ectopic beats in the recording. Low turbulence has been proved to be a powerful prognostic marker of total mortality after MI, independently of other widely accepted risk stratification indices.132,134,135 A reduced turbulence slope predicted SCD in MI survivors, as well as in patients with preserved left ventricular systolic function (LVEF>35%).56

Deceleration capacity (DC)

HR deceleration is achieved through vagal function. There exists experimental evidence for the parasympathetic nervous system offering protection to the heart from malignant arrhythmias.136 DC is computed from the series of RR intervals in a 24-hour Holter recording (Figure 4).89 It is believed that the DC method extracts from the cardiac time-series information relevant to the parasympathetic influences taking place at the sinus node level.89 Reduced DC has been proved to be a powerful prognostic index of mortality in post-MI patients.89 The index also has prognostic value for patients with preserved left ventricular systolic function (LVEF>35%).137 Combined HRT and DC identified a subgroup of patients with severe autonomic failure among a post-MI patient population with LVEF>30% who had a high mortality risk.138 Specifically, the subset of patients presenting with impaired HRT and DC, characterised as patients with severe autonomic failure, had greater mortality (38.6% vs. 6.1%, p<0.001) during a 5-year follow-up period compared to the patients with normal indexes.139
Vulnerability in electrophysiological testing

As the myocardial infarction heals a scar remains. This fibrotic area constitutes the anatomical substrate for the initiation and maintenance of an electrical re-entry circuit that may establish a dangerous VT. Programmed ventricular stimulation evaluates the arrhythmia inducibility in the electrophysiology laboratory. The performance of electrophysiological testing (EPT) depends on the stimulation protocol used (number and degree of prematurity of programmed extrastimuli) as well as the sites of stimulation and the underlying severity of left ventricular dysfunction, and/or the other previously mentioned non-invasive high-risk indices of an abnormal substrate and repolarisation phase. The value of EPT in the risk stratification process has been well documented by previous studies. EPT was used successfully to select patients for ICD implantation in the MADIT I and MUSTT trials, whereas a MADIT II sub-analysis reported that EPT predicted VT but not VF. Following this report, the value of the method for risk stratification of the post-MI patient was partly questioned. Regardless of this, EPT is a powerful prognostic tool for the assessment of high-risk patients, and this has been further confirmed by recent studies.

Future trends

Innovative research is evolving in the field of complex cardiac, respiratory and brain biosignals. Open signal databases and downloadable programs will facilitate international interdisciplinary research. Such important e-sites and groups include: 1) Physionet, with the MIT-BIH Arrhythmia Database (www.physionet.org); 2) The Working Group of Biological Signal Analyses of TUM (www.h-r-t.org); 3) The Academic Working Group of Eberhard-Karls-Universität Tübingen (www.thebiosignals.com); 4) The Working Group on in e-Cardiology of the European Society of Cardiology (www.escardio.org/communities/Working-Groups/e-cardiology); 5) The International Scientific Conference, Computing in Cardiology (www.cinc.org); 6) The International Society of Holter and Non-invasive Electrocardiology (www.ishne.org).

The evolution of technology is leading to the incorporation of all the non-invasive markers in Holter software. Risk stratification will be simplified, and a massive collection and analysis of prognostic information from just a simple daily heart signal recording will be routine. As the arrhythmic substrate is dynamic and evolves, the question arises as to what is the appropriate moment for risk estimation using each technique. Regardless of the technique used, non-invasive stratification methods should be subjected to randomised definitive trials to prove that patients identified as being at risk in fact derive benefit from a prophylactic ICD. In the coming years, the SCD risk stratification for post-MI patients is expected to be expanded to populations with a preserved ejection fraction. Considering that the overall risk of SCD is currently <1% per year in this group, clinical trials in this field will need to incorporate at least 10 to 20 times as many patients as studied in previous studies in order to identify the small subgroup of patients who have sufficient risk to justify an ICD. This requires the screening of >10,000–20,000 patients per trial. Such a sample size forms a financial barrier that must be overcome in order to organise such trials.
Current trends are leading to prognostic scores that, by summarising the indices reflecting different arrhythmia mechanisms and electrical instability parameters (anatomical substrate, autonomic imbalance, repolarisation prolongation, inducibility), promise better predictive accuracy for future malignant ventricular arrhythmias. The previous studies, REFINE, MUSIC and CHARISMA, moved in this direction and developed multi-parametric global prognostic scores, improving on the prediction of the individual markers. To achieve this target, the prospective observational clinical study Arrhythmia Prevention Trial (APRET) has been ongoing during the last 6 years, clinically assessing all the previously described non-invasive markers. APRET is being performed at the First Department of Cardiology and EP Lab, Medical School, National and Kapodistrian University of Athens; once the study results are complete, the respective arrhythmic SCD prognostic score will be formed.

References

Julian DG, Camm AJ, Frangin G, et al. Randomised trial of...

Verrier RL, Kumar K, Nearing BD. Basis for sudden cardiac death prediction by T-wave alternans from an integrative physiology perspective. Heart Rhythm. 2009; 6: 416-422.

